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S W Y  

2794’ 
An invest igat ion has been conducted t o  determine the  e f f ec t s  on t h e  

untrimmed and trimmed aerodynamic charac te r i s t ics  of two canard airplane 
configurations resu l t ing  from the  downward def lect ion of t h e  wing t i p s  
about hinge l i nes  p a r a l l e l  t o  t h e  body center l i n e .  One configuration 
had an aspect-ratio-2 triangular-wing plan form f o r  which the  outboard 
16 percent of the  area was  deflectable.  
t he  f i r s t  by replacing the  deflectable triangular-wing t i p s  with 
untapered surfaces of twice the  area having the  same sweep as t h e  wing 
leading edge. 
f o r  severa l  Mach numbers ranging from 0.70 t o  3.54. 

The second w a s  derived from 

Experimental longitudinal and s i d e s l i p  da ta  were obtained 

The re su l t s  showed t h a t  deflecting e i t h e r  t h e  t r iangular  t i p s  or 
t he  swept t i p s  s ign i f i can t ly  reduced supersonic longi tudinal  s t a b i l i t y  
and increased d i rec t iona l  s t a b i l i t y .  The e f f ec t s  on the  s t a b i l i t y  were 
accompanied by reductions of l i f t -curve slope and increases i n  drag due 
t o  lift which resul ted i n  reduced values of maximum untrimmed l i f t -d rag  
r a t i o .  
maximum untrimmed l i f t -d rag  r a t i o ,  it is  shown t h a t  t h e  maximum trimmed 
l i f t - d r a g  r a t i o  can be e i t h e r  higher o r  lower with t i p s  def lected than 
with t ips  undeflected, depending upon the  s t a b i l i t y  l e v e l  of t h e  
configuration with t i p s  undef lec ted  . 

Despite t he  detrimental  effects  of def lect ing the  t i p s  on the  

Estimations of t he  e f f ec t s  of  the deflected t i p s  on the  untrimmed 
aerodynamic charac te r i s t ics  were generally i n  f a i r  agreement with the  
experimental r e s u l t s .  

’ATitle , Unclassified 
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INTRODUCTION 

Among the  aerodynamic problems associated with the  charac te r i s t ics  
of aircraft designed t o  f l y  at supersonic speeds are the  increases of 
longitudinal s t a b i l i t y  and the  reductions of d i r ec t iona l  s t a b i l i t y  
resul t ing from increasing Mach number from subsonic t o  supersonic. 
charac te r i s t ic  of increased longi tudinal  s t a b i l i t y  generally requires 
t h a t  the minimum s t a t i c  margin be set a t  subsonic speeds s o  t h a t  it is 
necessary t o  balance or overcome large out-of-trim moments a t  supersonic 
speeds. The second charac te r i s t ic ,  concerning d i r ec t iona l  s t a b i l i t y ,  
introduces another problem - t h a t  of maintaining an adequate l e v e l  of 
d i rec t iona l  s t a b i l i t y  at supersonic speeds. Both of these problems can 
lead t o  inef f ic ien t  configurations through the  use of large longi tudinal  
controls and v e r t i c a l  s t a b i l i z e r s .  

The 

The r e su l t s  of references 1 and 2 have shown f o r  t r iangular  w i n g  
configurations t h a t  one means of a l l ev ia t ing  both problems is  the  
def lect ion of t he  wing t i p s  about e s sen t i a l ly  streamwise hinge l ines 
a t  supersonic speeds. The rearward movement of t h e  aerodynamic center 
i s  thereby reduced as a result of reducing the  l i f t i n g  area near t h e  wing 
t r a i l i n g  edge. A t  t h e  same time, addi t iona l  v e r t i c a l  s t ab i l i z ing  area 
is  provided i n  t h e  Mach number range where it is  needed. 

The primary purpose of t h i s  invest igat ion is t o  extend t h e  results 
of reference 1, wherein the  outboard 4 percent of the t o t a l  area of 
each wing panel w a s  def lected 90'. 
the  character is t ics  of a similar aspect-ratio-2 t r i angu la r  plan form 
f o r  which 16 percent of t h e  t o t a l  a rea  of each wing panel could be 
deflected various amounts t o  90'. A second configuration investigated 
was derived from the  f i r s t  by replacing the  def lectable  triangular t i p s  
with untapered surfaces having the  same sweep as the wing leading edge 
and having twice the  area of t he  t r i angu la r  t i p s .  The f i r s t  configura- 
t i o n  was investigated a t  Mach numbers from 0.70 t o  3.54 and t h e  second 
from 2.49 t o  3.54. 
without a canard control .  Comparisons of experimental and estimated 
e f fec ts  on t h e  aerodynamic charac te r i s t ics  resu l t ing  from deflect ing 
the surfaces have been m a d e .  

. 
The present invest igat ion determined 

Both of t h e  configurations were t e s t e d  with and 

NOTATION 

a . c .  

&.e. 

aerodynamic center determined a t  CL = 0, percent 

aerodynamic-center loca t ion  of a configuration with t i p s  
deflected minus t h a t  for t h e  configuration with t i p s  
undef lected,  percent c' 

. 
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CD 

cDo 

(3) 

G, 

c2 

Cn 

CY 

wing span 

mean aerodynamic chord of the  complete t r iangular  wing 

drag coeff ic ient  'F 
drag coeff ic ient  at CL = 0 

drag-due-to-lift fac tor ,  determined as average r a t e  of 
change of CD with CL* between CL = 0 and CL = 0.2 

3 

drag-due-to-lift fac tor  f o r  Configuration with t i p s  deflected 
minus t h a t  f o r  the  configuration with t i p s  undeflected 

l i f t  
'7 l i f t  coeff ic ient  

l i f t -curve  slope taken through 0' angle of a t tack,  per deg 

l i f t -curve  slope f o r  configuration with t i p s  deflected 
minus t h a t  f o r  the  configuration with t i p s  undeflected, 
per deg 

pitching -moment coefficient , p itching moment, referred t o  
qsc' 

the projection of the 0.21 c' point on the body reference 
l i ne  

rolling moment 
sm ro l l ing  -moment coefficient , 

yawing -moment coef f i c  ient , , referred t o  the yawing moment 
SSb 

projection of t h e  0.216 pint on the body reference l i ne  

s ide force 
ss side-force coeff ic ient ,  

yawing-moment coefficient f o r  configuration with t i p s  
deflected minus t h a t  for  the configuration with t i p s  
undef l e c t  ed 

side-force coeff ic ient  f o r  configuration with t i p s  deflected 
minus t h a t  f o r  the configuration with t i p s  undeflected 

difference between rolling-moment coeff ic ient  at  5' sides  l i p  
angle and 0' s ides l ip  divided by 5', per deg 

difference between yawing-moment coeff ic ient  a t  5' s i d e s l i p  
angle and 0' s ides l ip  divided by 5 O ,  per deg 
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I a angle of a t tack of wing root chord, deg 

difference between s ide-f orce coeff ic ient  at 5' s i d e s l i p  
angle and 0' s ides l ip  divided by 5', per deg 

I 2 t heo re t i ca l  length of body 
CL - L l i f t -d rag  r a t io ,  E 

D 
M f r ee  -stream Mach number 

r 

free-stream dynamic pressure 

l o c a l  body radius 

maximum body radius r0 I 
S area of the  complete t r iangular  wing formed by extending 

the leading and t r a i l i n g  edges t o  the  plane of symmetry 

P s i d e s l i p  angle measured between the  r e l a t ive  wind and the  
v e r t i c a l  plane of symmetry, deg 

6 angle of deflection of the canard, posi t ive when t r a i l i n g  
edge is down, deg 

(P angle of def lect ion of the  wing t i p s  , posi t ive when t i p s  
are  below plane of wing, deg 

Configurations are  denoted by the  following l e t t e r s  used i n  combination: 

B boay 

C canard 

designated t i p  def lect ion where xx is t i p  def lect ion Txx 
angle CP, deg 

v v e r t i c a l  t a i l  

w1 t r iangular  plan-form wing 

w2 
w3 W, with sweptback t i p s  added 

t r iangular  w i n g  with t i p s  removed at 60-percent semispan 
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max 

t 

Subscripts 

maximum value of quantity 

value obtained with configuration trimmed 

APPIBATUS AND MODEL 

T e s t  Fac i l i t i e s  

5 

The experimental data  were obtained i n  the  Ames 6- by 6 - ~ o o t  
Supersonic Wind Tunnel and the 8- by 7-foot t e s t  section of t he  Ames 
Unitary Plan Wind Tunnel. The 6- by 6-foot wind tunnel i s  a closed- 
c i r c u i t  variable-pressure type with a nominal Mach number range continuous 
from 0.7 t o  2.2. 
permit transonic t e s t ing .  
c i r c u i t  variable-pressure type and the 8- by 7-foot t e s t  sect ion has a 
nominal Mach number range continuous from 2.3 t o  3.5. 

The tunnel f l oo r  and ce i l ing  have perforations t o  
The Unitary Plan Wind Tunnel i s  a l so  a closed- 

Description of Model and Balance 

The basic sting-mounted model ( f i g .  1) consisted of an aspect- 
ra t io-2  t r iangular  wing, an aspect-ratio-2 t r iangular  canard, and a 
low-aspect - r a t i o  v e r t i c a l  t a i l  mounted on a fineness -I-atio-12 .5 Sears - 
Haack body. 
percent th ick  between the  30-percent and 70-percent chord s t a t ions .  
The streamwise included angles of the leading- and t ra i l ing-edge wedges 
were 5 . ~ 4 ~ .  

The wing had hexagonal s t r e m i s e  sections which were 3 

The model referred t o  as the  "triangular t i p s  configuration" had 
def lectable  t r iangular  surfaces which consisted of the area of each wing 
panel outboard of the  60-percent-semispan location (16 percent of the  
t o t a l  panel a rea)  and which could be deflected downward at  various 
angles up t o  90' about a hinge l i ne  p a r a l l e l  t o  the body center l i n e  or 
could be removed en t i r e ly .  
i s  shown i n  f igure 1( c ) . 
t i p s  configuration" was derived by replacing the deflectable t r iangular  
wing t i p s  with untapered surfaces having the same sweep as the  wing 
leading edge and having twice the  area of the  t r iangular  t i p s  (32 percent 
of t he  t o t a l  area of each t r iangular  wing panel).  
could be deflected downward at angles t o  90' or could be removed 
e n t i r e l y .  
f igure  l ( d ) .  

A dimensional sketch of t h i s  configuration 
The second model referred t o  as the  "swept 

The sweptback t i p s  

A dimensional sketch of t h i s  configuration is shown i n  
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The canard was constructed from a f l a t  .plate 0.20 inch th ick  and 
had leading and t r a i l i n g  edges beveled t o  form included streamwise 
angles of 5.2' and 9 . 5 O 1  respectively.  The canard hinge l i n e ,  passing 
through the 0.35 pint of i t s  mean aerodynamic chord, was  mounted i n  
the extended wing chord plane 1.21wing mean aerodynamic chord lengths 
ahead of the  reference center of moments (0.21 E ) .  The r a t i o  of the 
area of the exposed canard panels t o  the t o t a l  area of the  wing w a s  6.9 
percent and t he  r a t i o  of the t o t a l  areas was 12.9 percent. 
t a i l  had NACA 0003-63 sections streamwise. 
area of the t a i l  t o  the  t o t a l  area of the  wing was  13.9 percent. 
the model components were constructed of so l id  s t e e l  t o  minimize aero- 
e l a s t i c  e f fec ts .  

The ver t ica l  
The r a t i o  of the  exposed 

All 

The body was cut off as shown i n  f igure 1 t o  accommodate the s t i ng  
and the internal ,  six-component , strain-gage balance which measured 
forces and moments on the  en t i r e  configuration. 

"' 

A 
3 
5 
1 

TEST AND PROCEDURES 

Ranges of T e s t  Variables 

Data were obtained a t  Mach numbers of 0.70, 0.90, 1.30, 1.70, 2.22, 
2.49, 3.06, and 3.54, both a t  angles of a t tack and s ides l ip .  The exact 
t e s t  conditions f o r  each configuration are  shown i n  tab le  I. The t e s t  
Reynolds number based on the t r iangular  wing mean aerodynamic chord was 
3.68 million. 
diameter were placed on both surfaces of the wing and on the body, and 
wires of 0.007-inch diameter were placed on both surfaces of the v e r t i c a l  
t a i l  and canard at the locations shown i n  f igure l ( c )  i n  order t o  induce 
t rans i t ion  a t  fixed locations on the  model. The wire sizes were selected 
on the basis of the r e su l t s  of reference 3. No wires were placed on the  
model for Mach numbers of 2.49 and above, since the  wire s i ze  required t o  
induce t r ans i t i on  resu l t s  i n  excessive pressure drag. 

.. 
For t e s t  Mach numbers below 2.49, wires of 0.010-inch 

Reduction of Data 

The data  presented herein have been reduced t o  coeff ic ients  based 
on the geometry of the complete t r iangular  wing. 
yawing-moment coeff ic ients  have been referred t o  the projection, on the 
body center l i ne ,  of the 0.21 point of the  t r iangular  wing mean aero- 
dynamic chord. 
axes whi l e  a l l  other coeff ic ients  have been referred t o  the  body axes. 

The base pressure was measured and the  data  were adjusted t o  

The pitching- and 

L i f t  and drag coeff ic ients  were referred t o  the  wind 

correspond t o  a base pressure equal t o  the  free-stream s t a t i c  pressure. 

'srrr 
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The data obtained in the Ames 6- by 6 - ~ o o t  Supersonic Wind Tunnel 
were adjusted f o r  a stream inclination of l e s s  than +0.30° which existed 
throughout the Mach number range of the t e s t s .  
were made f o r  the data obtained i n  the 8- by 7'-foot t e s t  sect ion of the  
Ames Unitary Plan Wind Tunnel, where the stream incl inat ion was  l e s s  
than 0 .2l0 over the  range of t es t  Mach numbers. 

Similar corrections 

The drag data  obtained i n  the  8- by 7-foot t e s t  sect ion were 
corrected f o r  the buoyancy ef fec t  of longitudinal s ta t ic-pressure var ia-  
t ions  i n  the v i c in i ty  of the  model. These corrections amounted t o  l e s s  
than 1 .6  percent of the zero l i f t  drag of the  model. 
t o  make buoyancy corrections t o  the  data obtained i n  the 6- by 6 - ~ o o t  
Supersonic Wind Tunnel. 

It was  not necessary 

RESULTS AND DISCUSSION 

The primary purpose of t he  present investigation was t o  evaluate 
and compare experimental and estimated e f fec ts  on the aerodynamic 
charac te r i s t ics  of two wing and body combinations resu l t ing  from the  
def lect ion,  at supersonic speeds, of area about essent ia l ly  streamwise 
hinge l i nes  located at  60 percent of the semispans. Certain experimental 
r e su l t s  of reference 1 are included herein f o r  the purpose of showing the 
e f f ec t  on some of the character is t ics  of the amount of wing area deflected 
90°. 

The estimated r e su l t s  were obtained from l inea r  theory with wing- 
body interference e f fec ts  accounted for in general by the  methods 
outlined i n  reference 4. Estimations have been made only f o r  configura- 
t ions  without the  canard since no theory is  available t o  accurately 
predict  the  interference e f fec ts  of the canard on the  wing, body, and 
v e r t i c a l  t a i l .  It should be noted that  f o r  the estimations of longi- 
t ud ina l  charac te r i s t ics  presented herein wing-body interference was 
determined f o r  a f i n i t e  length afterbody rather  than f o r  the  i n f i n i t e  
afterbody used i n  reference 1. 

Longitudinal Characteristics 

The l i f t ,  drag, and pitching-moment charac te r i s t ics  of the  
t r iangular  t i p s  configuration with t i p s  undef lected,  deflected,  and 
removed are  presented i n  f igure 2 with the canard off and i n  f igures  3 
through 5 with the canard on. 
t i p s  configuration with the  t i p s  undef lected,  deflected,  and removed 
are  presented i n  f igure 6 with the canard off and i n  f igure 7 with the  
canard on. 

The same charac te r i s t ics  f o r  the swept 
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Further examination of f igure  8 reveals t h a t  def lect ing the  t i p s  

For t h e  
about streamwise hinge l i nes  at supersonic speeds i s  an e f f ec t ive  
method f o r  sh i f t i ng  t h e  aerodynamic-center locat ion forward. 
t r iangular  t i p s  t he  results of f igure  8 (a )  show t h a t  the  l a rges t  forward 

en t i r e ly  occurred when the  t i p s  were completely unloaded ( C p  = 90"). 
I s h i f t s  of t he  aerodynamic center obtained without removing the  t i p s  

8 

Aerodynamic center .  - The aerodynamic-center locations of the  
canard-off configurations with e i t h e r  t h e  t r iangular  or swept t i p s  at  
various angles of def lect ion or removed are shown i n  f igure  8 as a 
function of Mach number. 
t r iangular  wing and body combination of t h i s  invest igat ion ( C p  = 0') 
the  difference between the  aerodynamic -center loca t  ion at 0.70 Mach 
number and supersonic speeds could be large,  depending upon the  super- 
sonic Mach number. This difference a t ta ined  the  grea tes t  value a t  a 
Mach number of 1.30 where it amounted t o  O.lO5 E and it decreased with 
increasing supersonic Mach number t o  0.019 c' at  a Mach number of 3.54. 

Examination of f i gu re  8(a)  shows t h a t  for t he  

A more de ta i led  exminat ion of t he  pitching-moment curves through- 
out t he  l i f t - coe f f i c i en t  range shows an in t e re s t ing  cha rac t e r i s t i c  t h a t  
i s  apparently re la ted  t o  the  wing s ide  edge or t i p  e f f ec t s  when the 
t i p s  are deflected.  The results of f igure  2 ( e ) ,  f o r  example, show t h a t  
t h e  difference between the  s t a b i l i t y  of t he  configuration w i t h  t i p s  at 
90° and t h e  configuration with t i p s  removed is  considerably less a t  
negative l i f t  than at posi t ive l i f t .  
suggests t he  poss ib i l i t y  t h a t  upward def lected t i p s ,  by v i r t u e  of not 
being SO e f fec t ive  i n  suppressing t h e  w i n g  side-edge e f f e c t ,  would 
provide grea te r  forward aerodynamic-center s h i f t s  at  posi t ive l i f t  
coeff ic ients  than would downward def lected t i p s .  

Because of model symmetry this  

For the  swept t i p s  t he  r e su l t s  of f igure  8(b) show t h e  forward 
aerodynamic-center s h i f t s  t o  be grea te r  f o r  each angle of def lec t ion  
than for the  deflected t r iangular  t i p s .  However, even though the  a rea  
of t he  swept t i p s  i s  twice as large as that of the  t r i angu la r  t i p s  and . 
i s  dis t r ibuted f a r the r  a f t  on the  configuration, the  forward 

A 
3 
5 
1 
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aerodynamic-center s h i f t s  are not larger by a fac tor  of 2. This might 
be expected since the swept surfaces themselves have t i p  e f f ec t s  which 
prevent them from carrying as much load per uni t  area as do the tr iangu- 
l a r  t i p s .  

It is important t o  determine what e f f ec t s ,  i f  any, the addition of 
the  canard control has on the forward aerodynamic-center s h i f t s  experi- 
enced as a r e su l t  of deflecting the outboard surfaces. These e f f ec t s  
are  shown i n  f igure 9(a)  f o r  both 90' deflect ion and complete removal 
of the t r iangular  t i p s  and i n  figure 9 (b )  f o r  60° deflect ion of the  
swept t i p s .  The effectiveness of deflecting outboard surfaces t o  achieve 
forward aerodynamic-center s h i f t s  is increased measurably with the 
addition of the canard a t  0' deflection. 
r e su l t  a re  readily apparent. 
reason f o r  t he  increase i n  t i p  effectiveness with the addition of the 
canard is  related t o  the  f a c t  t h a t  the aerodynamic-center of the  
configuration is a t  a more forward location, re la t ive  t o  the  t i p s ,  when 
the  canard is on than when the canard is o f f .  This r e l a t ive  spacing 
between the  t i p s  and the  configuration aerodynamic-center has an e f f ec t  
f o r  the  same reasons t h a t  the difference between the s t ick-f ixed and 
s t ick- f ree  s t a b i l i t y  of any configuration is  dependent on the  r e l a t ive  
locations of the control  and center of l i f t  of the  other aerodynamic 
surfaces.  The second reason why the aerodynamic-center s h i f t s  a re  
la rger  when the  canard is on than when it is  off might be re la ted  t o  the 
differences between the canard-wing interference when the t i p s  a re  
undeflected and when they are  deflected or removed. It i s  thus evident 
from the  r e su l t s  of f igure 9 t h a t  for t h i s  par t icular  configuration a 
l e s se r  amount of wing t i p  deflection angle would be required t o  produce 
a given aerodynamic center s h i f t  when the  canard i s  on than when it i s  
o f f .  

Two possible reasons f o r  t h i s  
The f i r s t  and probably most important 

It is  of i n t e re s t  t o  determine how w e l l  the  e f fec ts  on the 
aerodynamic-center location result ing from deflecting the t i p s  can be 
estimated. Ln reference 1 it was shown t h a t  good estimations of the 
forward aerodynamic-center s h i f t s  result ing from 90° deflect ion of t he  
outboard 4 percent of the  area of each triangular-wing panel could be 
obtained by assuming t h a t  the  deflected t i p s  completely suppressed the 
l i nea r  theory planar t i p  e f fec t  of reference 5 ,  or, i n  other words, 
t h a t  t he  pressure on the  fixed portion of the wing w a s  unchanged by t i p  
def lect ion.  Theref ore, f o r  t h i s  analysis, the  aerodynamic center of 
t he  configuration with t i p s  deflected 90' i s  estimated by calculating 
the  aerodynamic center of the trapezoidal wing with planar t i p  e f fec ts  
omitted. 
e f f e c t s  a re  included. The r e su l t s  of these calculations a re  shown i n  
f igu re  9 wherein the forward aerodynamic center s h i f t s  resu l t ing  from 
deflect ing the t i p s  t o  90' or removing them en t i r e ly  are  presented as 
a function of Mach number. The effects  on the  aerodynamic center due 
t o  90' deflect ion of e i the r  t he  t r iangular  t i p s  or the  swept t i p s  are 

When the outboard surfaces a re  removed en t i re ly ,  the t i p  
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predicted reasonably well  throughout t he  Mach number ranges investigated.  
The forward aerodynamic-center s h i f t s  due t o  removing the t i p s  are  a lso 
closely predicted a t  a l l  Mach numbers. 

. 

It has been shown t h a t  the forward aerodynamic-center s h i f t s  
resul t ing from deflecting the t i p s  90' can be estimated reasonably 
accurately. 
s h i f t s  due t o  intermediate angles of t i p  def lect ion.  
t h i s  problem are  readily apparent. 
the  variation with t i p  angle of a t tack of the  force normal t o  the surface 
of the t i p  t o  be invariant with t i p  def lect ion angle. 
the  angle of a t tack of the t i p  and the  force normal t o  the  wing chord 
plane vary as the  cosine of 

It is  s t i l l  necessary t o  predict  the aerodynamic-center 
Two approaches t o  

One approach would be t o  consider 

Then, since both 

A 

5 
1 

Cp,  the  l i f t  on the t i p  would be reduced 
approximately as c o s q .  In the  second approach the l i f t  on the  t i p  i s  3 
allowed t o  vary d i r ec t ly  as the  area of the  t i p  projected onto the  plane 
of the undeflected portion of the wing. In e f f ec t ,  t h i s  method allows 
the  l i f t  on the t i p  t o  be reduced as 
above was orginal ly  presented i n  reference 2 and w i l l  be referred t o  as 
the  nonplanar method. The second approach w i l l  be referred t o  as the  
planar method. 
methods in  f igure 10 wherein the  r a t io s  of forward aerodynamic-center 
s h i f t s  result ing from intermediate t i p  def lect ion are  shown as a function 
of t i p  deflection angle, Cp, f o r  Mach numbers of 2.49 and above. 
should be noted t h a t  the  estimated curves f o r  only w e r e  
presented i n  f igure 10 since the  curves f o r  the other Mach numbers 
considered showed l e s s  than a k4-percent deviation from these values.  
The variation of t h i s  parameter with def lect ion angle Cp 
well for  both types of t i p s  by the planar method or ,  i n  other words, by 
the method which assumes the t i p  l i f t  t o  vary as the f i r s t  power of the  
cosine of def lect ion angle, C p .  It i s  in te res t ing  t o  note t h a t  when the  
t i p s  are deflected 60°, only half of t he  t o t a l  possible aerodynamic- 
center sh i f t  has occurred. 

cos C p .  The f i r s t  method described 

The experimental r e su l t s  are  compared with both of these 

It 
M = 3.06 

b 

i s  predicted 

It is readily apparent t h a t  the  methods used i n  calculat ing both 

and the absolute magnitude of the  s h i f t  f o r  90' of t i p  
the variation of the aerodynamic center movement with t i p  def lect ion 
angle 
deflection are  by no means exact within the  l imi t s  of l i nea r  theory. 
An attempt was made t o  t r e a t  t he  problem in a more precise manner by the  
superposition of two conical flow solutions;  one f o r  the t r iangular  
wing and one f o r  the t i p  surface.  
assumption tha t  the  pressure along any ray f romthe  apex of i t s  conical 
flow f i e l d  was unchanged by turning through the angle between the 
undeflected portion of the wing and the  deflected t i p  surface.  
r e su l t s  of these calculations were not included herein since the 
aerodynamic-center s h i f t  resu l t ing  from 90° of t i p  def lect ion did not,  
i n  general, agree as favorably with the  experimental data as did the  
r e su l t s  fo r  the method presented; the predicted var ia t ion  of aerodynamic- 
center movement with t i p  def lect ion angle ~p w a s  close t o  t h a t  given by 

Cp 

Inherent i n  t h i s  method was the  

The -- the  nonplanar method. 
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The forward aerodynamic center-shif t  t h a t  can be obtained by 
deflecting outboard portions of the wing is  a function not only of the  
angle of def lect ion of the surfaces but a lso the amount of area of the  
wing t h a t  is movable. The measured e f f ec t s  of the amount of area 

those obtained in t h i s  investigation, are  compared with the  estimated 
e f f ec t s  i n  f igure ll fo r  several  Mach numbers. It should be noted t h a t  
f o r  supersonic Mach numbers f o r  which the  leading edge of the  wing is 
subsonic ( M  5 2.24), Mach number has very l i t t l e  e f fec t  on the  estimated 
var ia t ion of forward aerodynamic-center s h i f t  s o  t h a t  the  s ingle  e s t i -  
mated curve shown i n  f igure 11 applies t o  the three Mach numbers i n  
t h i s  range. 
Mach number dependence, however. The experimental data  show a Mach 
number dependence which i s  not predicted. This probably r e su l t s  from 
some t i p  e f fec t  acting a t  l e a s t  on the upper surface of the  undeflected 
portion of the  wing when the t i p s  are deflected.  The results of f igure 
11 also  show t h a t  the  r a t e  of change of forward aerodynamic-center 
s h i f t  with amount of area deflected i s  becoming somewhat smaller as 
more area is  deflected.  This trend i s  a r e su l t  of the center of 
pressure of the load on the  area being deflected approaching the center 
of pressure of the load on the t r iangular  wing as the  amount of area 
deflected i s  increased. 

de-'Iec led 9co, aetel-iiihied by cofifuliibiilg yes-d ts  from refereiice 1 wit.i 

Estimated r e su l t s  f o r  Mach numbers above 2.24 do show a 

L i f t  and drag.- The l i f t -curve  slopes of the  canard-off configura- 
t ions  with the  t i p s  e i the r  a t  various angles of def lect ion o r  removed 
are  shown i n  figures U(a) and 12(b) as functions of Mach number f o r  
the  t r iangular  and swept t i p s ,  respectively. Examination of f igure 12 
shows the expected trend of reduced l i f t -curve  slopes due t o  t i p  deflec- 
t ions  at a l l  Mach numbers investigated. It is  also shown t h a t  without 
the  t i p s  the l i f t -curve  slopes are  less  than the values f o r  90° t i p  
def lect ion.  This l a t t e r  trend is consistent with the previously d i s -  
cussed e f fec t  of removing the t i p s  on the  aerodynamic center - they 
both indicate the planar t i p  e f fec t  i s  suppressed by the deflected t i p s .  

The e f f ec t s  on the  l i f t -curve slopes resul t ing from e i the r  90' 
deflect ion or removal of both the t r iangular  and swept t i p s  have been 
estimated. The comparisons of these estimates with the experimental 
r e s u l t s  are  made i n  f igure 1-3 wherein the  var ia t ion with Mach number 
of the  r a t io s  of l i f t -curve  slopes with t i p s  deflected 90' or removed 
t o  l i f t -curve  slopes of the  configurations with t i p s  a t  Oo are  presented. 
The agreement is  good a t  the  lower Mach numbers and excellent a t  the 
higher ones. This generally good agreement tends t o  substant ia te  the 
assumption based on the r e su l t s  of reference 1 t h a t  the 90° deflected 
t i p s  suppress the  planar t i p  effects .  

Also shown i n  f igure 13 i s  the e f f ec t  of the  addition of the canard 
on the  l if t-curve-slope r a t i o  f o r  the configuration with the t r iangular  
t i p s  deflected 90' or removed o r  with the swept t i p s  deflected 600. 
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The effect  o f  the canard on t h i s  parameter i s  never large nor i s  it 
consistent with Mach number. This strongly suggests t h a t  the large 
consistent e f fec ts  of the  addition of the  canard on the  aerodynamic 
center sh i f t s  are a r e su l t  of the  previously discussed r e l a t ive  locations 
of the  center of t i p  l i f t  and the  aerodynamic-center locations with the  
canard on and off ra ther  than differences between canard-wing in t e r -  
ference when the t i p s  are undeflected and when they are  deflected o r  
removed. 

Figure 14 presents the  experimental and estimated e f fec ts  of t i p  
deflection angle Cp on l i f t -curve  slope.  The r e su l t s  shown i n  t h i s  
f igure  are s imilar  t o  those shown f o r  aerodynamic-center s h i f t s  
discussed previously; namely, t h a t  only half  of the  t o t a l  change of the 
l i f t -curve slope with def lect ion angle has occurred when the t i p s  are  
deflected 60° and t h a t  the planar estimates a re  i n  b e t t e r  agreement 
with the experimental r e su l t s .  

I f  t he  present r e su l t s  are combined with those of reference 1, the  
e f fec ts  on the  l i f t -curve  slopes resul t ing from the  90° deflect ion of 
various amounts of wing area can also be shown. These experimental 
e f fec ts  a r e  presented i n  f igure 13 together with the  estimated e f f ec t s .  
A t  Mach numbers below 2.24 where the wing leading edge is  subsonic, 
the percentage reduction of l i f t -curve  slope due t o  removing w i n g  area 
by 90° t i p  deflection is  nearly t w i c e  the  percentage reduction of t he  
wing area; f o r  example, 90' deflect ion of 16 percent of the wing area 
re su l t s  i n  approximately a 30-percent reduction of l i f t -curve  slope. 
However, as t he  Mach number i s  increased above t h a t  f o r  a sonic leading 
edge, experiment and theory indicate the percentage reduction of l i f t -  
curve slope decreases f o r  a constant amount of deflected area.  

? 

Deflection of e i the r  the  t r iangular  t i p s  or the  swept t i p s  
resulted i n  pronounced ef fec ts  on the  l i f t  and pitching-moment character-  
i s t i c s  and it would be expected t h a t  the drag would likewise be affected 
primarily through ef fec ts  on the  drag due t o  l i f t .  The e f f ec t s  on the  
minimum drag coeff ic ient  and drag due t o  l i f t  resu l t ing  from deflect ing 
the  surfaces are  shown i n  f igure 16 as a function of Mach number. 
Deflection of e i the r  the t r iangular  or the  swept t i p s  had l i t t l e  e f f ec t  
on the  minimum drag, i n  f a c t  so l i t t l e  t h a t  only the  extremes of Oo and 
90° deflection angles are  shown. 

The drag due t o  l i f t  was increased s igni f icant ly  throughout the Mach 
number range as a r e su l t  of def lect ing the  t i p s .  The complete removal 
of the  t i p s  produced fur ther  increases i n  the drag due t o  l i f t  of about 
the same magnitude as those obtained f o r  90° t i p  def lect ion.  
increases can be a t t r ibu ted  primarily t o  the reductions of l i f t -curve  
slope. Since the sharp wing leading edge does not permit the  a t t a in -  
ment of a s ign i f icant  amount of the leading-edge th rus t  predicted by 
l i nea r  theory when the wing leading edge is subsonic, the estimates here 

These . 
? 
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of the  e f f ec t s  on the  drag due t o  l i f t  resu l t ing  from e i t h e r  def lect ing 
t h e  t i p s  90' o r  removing them were made assuming no leading-edge 
suction throughout t he  Mach number range. These estimates are compared 
with the  experimental r e su l t s  i n  figure 17. I n  general, t he  estimated 
increases i n  t h e  drag due t o  l i f t  are l a rge r  than those obtained 
experimentally. 
a r e s u l t  of the  overestimate of the reduction of l i f t -curve  slope.  
Another contributing f ac to r  t o  t h i s  disagreement between estimated and 
experimental r e s u l t s  i s  the  nonlinearity of t he  l i f t  with increasing 
angle of a t tack  ( e  .g . , see f i g .  2 )  believed t o  be caused primarily by 
the  tendency of t he  sharp wing leading edge t o  promote leading-edge 
separat ion.  While the  nonlinear increase i n  l i f t  due t o  leading-edge 
separation at a given angle of attack is  probably reduced somewhat by 
def lect ing the  t i p s ,  it evidently amounts t o  a greater  percentage of 
t he  t o t a l  l i f t  when the surfaces a re  def lected o r  removed. Thus, as 
the  angle of def lect ion of t he  t i p s  is increased, t he  e r r o r  resu l t ing  
from estimating the  drag due t o  l i f t  by assuming a l i n e a r  var ia t ion  of 
l i f t  with angle of a t tack  would be increased. 

A t  some Mach numbers t h i s  condition e x i s t s  par t ly  as 

Included i n  f igure  1.7 are data  showing the  e f f ec t  of t h e  addi t ion 
of the  canard on the  drag-due-to-lift increases resu l t ing  from t i p  
def lec t ion  or  t i p  removal. In general, the  canard has the  e f f ec t  of 
reducing the  drag-due-to-lif t  increase, the  grea tes t  e f f ec t  being when 
the  t i p s  are  removed completely. 

Although t h e  theory generally overestimated the  increase i n  drag 
due t o  l i f t  resu l t ing  from deflecting the  t i p s  90°, it i s  s t i l l  i n t e re s t -  
ing t o  determine i f  the  e f f ec t s  a t  intermediate def lect ion angles can 
be estimated knowing the  values of t h e  drag due t o  l i f t  at 0' and 90' 
t i p  def lec t ion .  The estimated variations with t i p  def lect ion angle Cp 
of the change i n  drag due t o  l i f t  expressed as a f r ac t ion  of t he  t o t a l  
drag due t o  l i f t  change f o r  90' of def lect ion f o r  both the  planar and 
nonplanar methods are  compared with the experimental var ia t ions i n  
f igure  18. It should again be noted t h a t  t he  estimated curves f o r  
M = 3.06 only were presented i n  figure 18 since the  curves f o r  t he  
other Mach numbers considered showed l e s s  than a &-percent deviation 
f rom these values.  
l i f t  and pitching moment resulgs discussed previously inasmuch as 
def lect ions of t he  order of 60 
change i n  drag due t o  l i f t  and a l s o  the planar estimates afford the  bes t  
agreement with the  experimental data .  

The r e su l t s  of f igure 18 are consistent w i t h  t he  

produce about half  t he  t o t a l  possible 

The drag-due-to-lif t  r e su l t s  of reference 1 have been combined with 
the  present r e su l t s  t o  determine the  var ia t ion  with percent of wing 
area  def lected 90° of the  drag due t o  lift f o r  t he  t r iangular  t i p s .  
The experimental var ia t ions shown in  f igure  19 f o r  several  Mach numbers 
are a l so  compared with the  estimated var ia t ions .  The drag due t o  l i f t  
i s  increasing s t ead i ly  with increasing percentage of wing area deflected 
as a r e s u l t  of t he  reducing l i f t -curve slope although the  experimental 
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increases are  always l e s s  than t h a t  which would be expected from l i f t -  
curve slope considerations alone-  The experimental r e s u l t s  of f igure  19 
f o r  Mach numbers of 2.22 and below a lso  show a dependence on Mach number 
which i s  not predicted by t h e  theory.  

It i s  appropriate t o  summarize the  over -a l l  e f f ec t s  of the  def lected 
t i p s  on the  l i f t  and drag of the configurations by examining the  var ia -  
t i ons  with Mach number of t he  maximum l i f t - d r a g  r a t i o s .  The maximum 
l i f t -drag  r a t io s  of the canard off configuration with e i t h e r  the  
t r iangular  t i p s  o r  swept t i p s  at the various angles of def lect ion o r  
removed are  presented i n  f igure  20 as a function of Mach number. 
maximum l i f t -d rag  r a t i o s  are  shown t o  be always decreasing with increas- 
ing deflection angle. 
configurations with t i p s  def lected 90' and with t i p s  removed were 
qui te  different  a t  a l l  Mach numbers investigated,  t he  l i f t -d rag  r a t i o s  
of these two configurations were nearly the  same f o r  Mach numbers of 
2.49 and above. 
Mach numbers the  reduction i n  minimum drag coef f ic ien t  resu l t ing  from 
removing the  t i p s  nearly compensates f o r  t h e  increased drag due t o  l i f t .  

The 

While the  l i f t  and drag charac te r i s t ics  of t h e  

This i s  due primarily t o  the  f a c t  t h a t  a t  these higher 

Trimmed cha rac t e r i s t i c s .  - Deflecting the  t i p s  O f  a t r iangular  wing 
has been shown t o  be a powerful method f o r  reducing t h e  configuration 
longitudinal s t a b i l i t y  at supersonic speeds, but t he  attendant losses  
i n  maximum untrimmed l i f t -d rag  r a t i o  could reduce the  a t t rac t iveness  of 
using t h i s  method. 
t he  smaller out-of -trim moments when the  t i p s  are def lected would r e s u l t  
i n  smaller increments of trim drag. Thus, it is  possible t h a t  t h e  
trimmed l i f t -d rag  r a t i o s  obtained with the  t i p s  def lected would be higher 
than the trimmed l i f t -d rag  r a t i o s  obtained with the  t i p s  undeflected. 
Therefore, the  l i f t -d rag  ra t ios  of t he  t r iangular  t i p s  configuration 
trimmed with the  canard w i l l  be examined. Both the  center-of -gravity 
location and the  var ia t ion  with Mach number of t he  aerodynamic-center 
location of the configuration with t i p s  undeflected have important 
e f fec ts  on the  determination of what t i p  def lect ion angles a re  needed 
a t  supersonic speeds t o  provide the  most e f f i c i e n t  trimmed configura- 
t i o n .  
of the configuration with the  t i p s  undeflected and the  canard on at Oo 
deflection r e su l t s  i n  a s t a t i c  margin which i s  never less than about 
4-percent c' throughout t he  l i f t - c o e f f i c i e n t  range a t  0.70 Mach number. 
With t h i s  center-of -gravity locat ion the  resu l t ing  minimum s t a t i c  margins 
a t  supersonic Mach numbers could be reduced t o  near ly  zero with 90° of 
t i p  deflection at Mach numbers through 2.22 and 600 t i p  def lec t ion  a t  
Mach numbers from 2.49 t o  3.54 (see figs. 4 and 5). The lesser amount 
of required t i p  def lect ion a t  t h e  higher Mach numbers is  a r e s u l t  of 
t he  rather large forward movement of t he  aerodynamic center with Mach 
number oi' the configuration with the  t i p s  undeflected. These t i p  
def'lection angles f o r  which trimmed cha rac t e r i s t i c s  were obtained are . 
not necessarily the  optimum f o r  t h i s  pa r t i cu la r  configuration but  t he  

A compensating f ac to r  does e x i s t ,  however, i n  t h a t  

For t h i s  analysis t he  chosen center-of-gravity locat ion (0.21 C) 

. 
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results do demonstrate t he  e f fec ts  on the  trimmed l i f t -d rag  r a t i o s  
when the  s t a t i c  margins are  reduced by about t he  maximum amount per- 
missible without allowing the  conf igu.ra.tion to beeom amtab le  - 
should be noted t h a t ' i n  the  higher Mach number range triwned character-  
i s t r i c s  f o r  the  configuration with 0' of t i p  def lect ion were obtained 
by assuming t h a t  t he  canard character is t ics  measured i n  reference 6 
apply t o  the  present canard. 
i den t i ca l  t o  the  t r iangular  wing configuration of t h i s  invest igat ion 
with the  exception of wing sect ion.  

It 

The configuration of reference 6 w a s  

The trimmed l i f t -d rag  r a t i o s  f o r  the def lected t i p s  configurations 
are compared with those f o r  the  undeflected t i p s  configuration i n  
f igure  21. The maximum trimmed l i f t -d rag  r a t i o  was increased by about 
0.8 at a Mach number of 1.30 as a resu l t  of def lect ing t h e  t i p s  t o  go0. 
However, t h e  benef ic ia l  e f f ec t s  on the maximum trimmed l i f t -d rag  r a t i o  
resu l t ing  from deflect ing the  t i p s  diminished with increasing Mach 
number u n t i l  at a Mach number of 2.22 the  maximum trimmed l i f t -d rag  
r a t i o  w a s  t h e  same with the  t i p s  e i the r  def lected o r  undeflected. 
t he  higher Mach numbers t h e  maximum trimmed l i f t -d rag  r a t i o s  were from 
0.2 t o  0.4 less when the  t i p s  were deflected 600 than when the  t i p s  
were undef lected . 

A t  

Data were obtained f o r  suf f ic ien t  canard def lect ion angles a t  
Mach numbers of 2.22 and below t o  examine t h e  e f f ec t s  of s t a t i c  margin 
on the  r a t i o  of maximum triwned l i f t -d rag  r a t i o  with the  t i p s  def lected 
90' t o  t h a t  f o r  the  undeflected t i p s .  
f igure  22. 
number of 0.70 corresponds t o  the  0.21 c' center-of-gravity locat ion f o r  
which t h e  results have been discussed. 
above t h i s  l e v e l  produces the  favorable e f f ec t  of increasing t h e  maximum 
l i f t - d r a g  r a t i o  f o r  the  deflected t i p  configuration more and more above 
t h a t  f o r  t h e  undeflected t i p  configuration. 
t i ons  i n  which t h e  center-of-gravity locat ion i s  f a r t h e r  forward o r  i n  
which t h e  favorable forward s h i f t  i n  aerodynamic-center locat ion with 
increasing supersonic Mach number i s  not experienced it i s  possible 
t h a t  t h e  trimmed l i f t -d rag  r a t i o  may be increased by def lect ing t h e  wing 
t i p s  at the  higher supersonic Mach numbers as w e l l .  

These r e su l t s  a re  shown i n  
The ze ro - l i f t  s t a t i c  margin of 10.8-percent c' at a Mach 

Increasing t h e  s t a t i c  margin 

Thus f o r  airplane configura- 

Because of the  twofold purpose of def lect ing the  t i p s ,  t h a t  i s ,  t o  
reduce t h e  longi tudinal  s t a b i l i t y  and increase the  d i rec t iona l  s t a b i l i t y  
a t  supersonic speeds, there is  no doubt as t o  t h e  d e s i r a b i l i t y  of 
def lec t ing  the  t i p s  so long as the  maximum trimmed l i f t -d rag  r a t i o s  a re  
improved or at  least equaled by so doing. However, when a reduction of 
t he  trimmed longi tudinal  eff ic iency of t h e  configuration r e su l t s  from 
def lec t ing  the  t i p s ,  it then becomes necessary t o  examine the  d i r ec t iona l  
s t a b i l i t y  charac te r i s t ics  t o  determine i f  they are su f f i c i en t ly  improved 
t o  j u s t i f y  t h e  possible penalt ies incurred i n  trimmed l i f t -d rag  r a t i o .  
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Lateral and Direct ional  Character is t ics  

A t  Mach numbers of 2.22 and below a l l  of the l a t e r a l  and d i r ec t iona l  
da ta  ( c Z ,  cy, c,) were obtained a t  constant s i d e s l i p  angles of 0' and 5 O  
with angle of a t tack  as the  primary var iable .  
and above, the  data were obtained a t  constant angles of a t tack  of 0' 
and 5 O  with angle of s i d e s l i p  as the  independent var iab le .  
r e s u l t s  are presented in f igures  23 through 27 and t h e  ranges of t he  
t es t  variables a re  tabulated i n  t a b l e  I. 
incremental der ivat ives  f o r  t he  t r iangular  t i p s  configuration with t h e  
canard off are summarized as a function of Mach number i n  f igure  28 
f o r  angles of a t tack  of Oo, 5 O ,  and 10' and f o r  t he  canard-off swept 
t i p s  configuration i n  f igure  29 at 5' angle of a t tack .  

A t  Mach numbers of 2.49 

These 

The la teral  and d i r ec t iona l  

Examination of f igures  28 and 29 shows t h a t  90° def lect ion of 

cyP 
e i t h e r  the t r iangular  o r  the  swept t i p s  produced increases i n  
which resulted i n  increased d i r ec t iona l  s t a b i l i t y  a t  a l l  Mach numbers 
investigated.  
available f o r  intermediate angles of t i p  def lect ion,  both 
increased with increasing t i p  def lect ion angle as would be expected. 
In contrast ,  the  lateral  s t a b i l i t y  der ivat ive 
var ia t ion with t i p  def lect ion which w a s  d i f f e ren t  from t h a t  which might 

hence greatest  reduction i n  l a t e r a l  s t a b i l i t y ,  occurred f o r  600 of t i p  
def lect ion.  
s t a b i l i t y  increased above the  l e v e l  f o r  60° of t i p  def lec t ion .  
reversal  of t he  e f f ec t  on 
can be re la ted  t o  the  f a c t  t h a t  the normal loads on t h e  t i p s  increase 
with increasing t i p  angle while t he  e f f ec t ive  moment arms of these 
loads decrease with increasing t i p  angle. The t i p  angle where the  
reversal  occurs i s  t h a t  angle where t h e  increase i n  normal loads i s  
exactly o f f se t  by the  reduced moment arm lengths.  
s t a b i l i t y  w a s  reduced considerably a t  large angles of t i p  def lec t ion  the  
t r iangular  t i p  configuration s t i l l  re ta ined a margin of l a t e r a l  s t a b i l i t y  
(-Cz ) f o r  a l l  Mach numbers invest igated.  
l a rge r  s w e  t t i p s  caused t h e  la teral  s t a b i l i t y  t o  be reduced t o  zero f o r  
30° and 90 of t i p  def lect ion and less thm. zero f o r  intermediate angles 
(see f ig .  29) .  

A t  Mach numbers of 2.49 and above, where da ta  were 
CyP and CnP 

exhibited a c z P  
be expected from a cursory ana lys i s .  The grea tes t  change i n  CIP, and 

r 
As the  t i p  angle w a s  increased from 600 t o  90° the  lateral  

This 
with increasing t i p  def lect ion angle c z P  

Although the  l a t e r a l  

However, def lect ion of t he  P 
8 
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An examination of t h e  va r i a t ion  with angle of a t tack  of t he  
f o r  t h e  t r iangular  t i p s  configura- 

at  supersonic speeds 90° def lect ion cne d i rec t iona l  s t a b i l i t y  parameter 
t i o n  ( f ig .  28) reveals t he  f a c t  t h a  
of the  t i p s  r e su l t s  i n  a grea te r  percentage increase in s t a b i l i t y  a t  
>o angle of a t tack  than at 0' angle of a t tack .  
reduction with increasing angle of a t t ack  of t h e  v e r t i c a l  t a i l  contribu- 
t i o n  t o  the  d i rec t iona l  s t a b i l i t y  ( see  re f .  7), r e s u l t s  i n  a nearly 

This, combined with the  # 
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constant s t a b i l i t y  l e v e l  f o r  t h e  90° deflected t i p s  configuration f o r  
an angle of a t tack  range of 0' t o  5 O .  A t  l a rge r  angles of a t tack  t h e  
s t a b i l i t y  decreases at about t h e  same rate as when t h e  t i p s  are a t  Oo. 

It has been shown i n  reference 7 and elsewhere t h a t  the  e f fec t ive-  
ness of a v e r t i c a l  s t ab i l i z ing  surface may be changed by the  addi t ion 
of a canard control  because of interference between t h e  canard-vortex 
f i e l d  and v e r t i c a l  surface.  Therefore, it is  of importance t o  determine 
the  extent of t h e  e f f ec t s  of interference between t h e  canard wake and 
downward def lected wing t i p s .  These e f f ec t s  are shown i n  f igure  30 
f o r  5' angle of a t tack  with the t r iangular  t i p s  def lected 90° at Mach 
numbers up t o  2.22 and with t i p s  deflected 60° i n  the  Mach number range 
from 2.49 t o  3.54. 
had e s sen t i a l ly  no e f f ec t  on t h e  increments of s ide  force or yawing 
moment a t  Mach numbers of 2.22 or less  due t o  90' of t i p  def lect ion.  
However, at Mach numbers of 2.49 and above, where the t i p s  were def lected 
60°, t h e  addi t ion of t he  canard control resu l ted  i n  an increased l e v e l  
of d i r ec t iona l  s t a b i l i t y .  While the  difference between the  canard 
wing-tip interference might be related t o  Mach number e f f ec t s  it i s  
believed t o  be more l i k e l y  a t t r ibu ted  t o  severa l  fac tors  re la ted  t o  t i p  
def lec t ion  angle. Among them are  the va r i a t ion  with t i p  def lect ion 
angle of the  r e l a t i v e  locations of the vortex f i e l d  and deflected 
surfaces and t h e  f a c t  t h a t  when the  t i p s  a re  deflected t o  any angle 
other than Oo or 90°, they carry combined loadings due t o  angle of 
a t tack  and angle of s ides l ip ,  both of which can be a l t e r ed  by 
interference-induced angles . 

The results of  f igure 30 show t h a t  adding the  canard 

Although the  canard has no e f fec t  on t h e  increment of d i r ec t iona l  
s t a b i l i t y  resu l t ing  from the  90° deflect ion of t he  t i p s  at supersonic 
Mach numbers t o  2.22, a study of the  r e su l t s  of f igure  23 indicates  
t h a t  it does a f f ec t  the  over -a l l  s t a b i l i t y  l e v e l  of t h e  e n t i r e  configura- 
t i o n  a t  angles of a t tack  above 6O t o  10' depending upon the  Mach number. 
This e f f e c t  i s  des tab i l iz ing  at a Mach number of 1-30,  very s m a l l  at 
M = 1.70, and s l i g h t l y  s t ab i l i z ing  a t  M = 2.22. 

It is  in te res t ing  t o  note i n  th i s  regard t h a t  even i f  t h e  e f f ec t s  
of interference between the  canard and other configuration components 
are  des tab i l iz ing  directionally,  t he  net s t a b i l i t y  l e v e l  of a canard 
configuration might s t i l l  be higher than f o r  an a f t -cont ro l  arrangement. 
This is due t o  the  f a c t  t h a t  t he  use of a canard cont ro l  necessar i ly  
requires  the  center of gravi ty  of the configuration t o  be a t  a more 
forward locat ion t o  insure s t a t i c  longitudinal s t a b i l i t y  than if an aft 
cont ro l  were used. This, i n  tu rn ,  causes t h e  e f fec t ive  moment arm and 
hence d i rec t iona l ly  s t ab i l i z ing  e f fec t  of t h e  loadings on the  af t - located 

. s t a b i l i z i n g  surfaces t o  be greater  for  t he  canard configuration i n  the  
absence of interference e f f e c t s .  



The var ia t ion  with Mach number of t h e  experimental r a t i o s  at 0' 

Cyp and CnP with the  t i p s  at Oo are compared with estimates i n  f igure  
31. The estimates of these ratios were made using t h e  method outlined 
i n  reference 1 wherein it i s  assumed t h a t  t he  wing ac ts  as a r e f l ec t ion  
plane f o r  t he  loading on the  inboard s ides  of t he  deflected t i p s  while 
t he  loading on the  outboard s ide of each t i p  was  assumed t o  correspond 
t o  tha t  which t h e  surface would carry i n  a free-stream environment. 
The Cyp r a t i o  is  predicted reasonably w e l l  a t  Mach numbers of 1.30 
and 1.70 with increasing differences between experiment and theory 
noted a t  the  higher Mach numbers. Of more significance,  however, i s  
the  be t t e r  agreement between the  estimated and experimental d i r ec t iona l  
s t a b i l i t y  r a t i o s  a t  a l l  Mach numbers t e s t e d .  

angle of a t tack of Cyp and CnP with the  t r iangular  t i p s  a t  90° t o  b 

The changes i n  CY and Cn resu l t ing  from intermediate angles of 
t i p  deflection expressed as a f r ac t ion  of t h e  t o t a l  changes i n  these 
parameters f o r  90' of t i p  def lec t ion  have a l so  been estimated by means 
of both t h e  planar and nonplanar methods described i n  the  sect ion on 
longitudinal charac te r i s t ics .  These estimates are  compared with the  
experimental results f o r  the  t r iangular  t i p s  f o r  an angle of a t tack  of 
00 a t  a Mach number of 3.06 in f igure  32. The experimental side-force 
r a t i o  is  beat approximated by t h e  planar method while the  yawing-moment 
r a t i o  is  predicted closely by the  nonplanar method. Neither method of 
estimating these r a t i o s  appears t o  be superior and s ince h t h  give 
resu l t s  which a re  not grea t ly  d i f f e ren t  f o r  t h e  l a rge r  angles of t i p  

bas i s  of the  close approximations of t he  longi tudinal  r e su l t s  by t h i s  
method. 

deflection the  planar method r e su l t s  should probably be accepted on the  w 

Again r e su l t s  from reference 1 have been used t o  show the  e f f ec t s  
on the d i rec t iona l  s t a b i l i t y  resu l t ing  from the  90° def lec t ion  of 
various amounts of wing area. These e f f ec t s  are shown i n  f igure  33 
f o r  Oo angle of a t tack  and Mach numbers of 1.30, 1.70, and 2.22 and 
indicate a near ly  l i nea r  increase i n  d i r ec t iona l  s t a b i l i t y  with amount 
of area deflected f o r  a l l  Mach numbers considered. It is  fu r the r  shown 
t h a t  the theory predicts  t h i s  increase i n  a sa t i s f ac to ry  manner f o r  
these Mach numbers. 

It has been shown t h a t  the  def lec t ion  of outboard portions of t he  
triangular w i n g  about streamwise hinge l i n e s  can result i n  la rge  
increases i n  d i rec t iona l  s t a b i l i t y .  It has fu r the r  been shown t h a t  
the  increases in d i r ec t iona l  s t a b i l i t y  may o r  may not be achieved with- 
out incurring penal i t i es  i n  the  form of reduced maximum trimmed l i f t -  
drag r a t i o .  Therefore, no de f in i t i ve  statement can be made as t o  the  
des i r ab i l i t y  of t i p  def lec t  ion as a means of improving d i r ec t iona l  
s t a b i l i t y  without weighing the  r e l a t i v e  e f f ec t s  of t he  def lected t i p s  
on both the  longi tudinal  and d i r ec t iona l  cha rac t e r i s t i c s .  c 
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The r e l a t i v e  e f f ec t s  of t he  deflected t i p s  on both the  trimmed 
l i f t - d r a g  r a t i o s  and t h e  d i rec t iona l  s t a b i l i t y  are s m a r i z e d  i n  
f igure  34. The values of d i rec t iona l  s t a b i l i t y  used i n  t h i s  plot  were 
obtained at t h e  corresponding angles of a t tack  f o r  maximum trimmed 
l i f t - d r a g  r a t i o .  The r e su l t s  of f igure 34(a) show f o r  Mach numbers of 
2.49 and above t h a t  60° deflect ion of t he  t i p s  increased the  d i r ec t iona l  
s t a b i l i t y  from about 1.6 t o  2.3 times, depending upon the  Mach number, 
while causing t h e  maximum trimmed l i f t -d rag  r a t i o s  t o  be of the  order 
of 93 t o  95 percent of the  values for  no t i p  def lec t ion .  

The r e s u l t s  of f igure  34(b) f o r  supersonic Mach numbers of 2.22 
and below and f o r  90' of t i p  deflection show that increases i n  d i r ec t iona l  
s t a b i l i t y  of the order of 1.7 times could be achieved without any 
penalty i n  maximum trimmed l i f t -d rag  r a t i o  when 16 percent of the  wing 
area w a s  def lected.  
trimmed l i f t -d rag  r a t i o  w a s  increased by about 15 percent.  When t h e  
combined areas of t he  90' def lected t i p s  was  l e s s  than 16 percent of 
t h e  wing area, the increases of d i rec t iona l  s t a b i l i t y  were correspond- 
ingly smaller and the  maximum trimmed l i f t -d rag  r a t i o  w a s  penalized 
somewhat a t  M = 2.22. One of t he  factors  contributing t o  the  reduc- 
t i o n  with increasing Mach number of the bene f i c i a l  e f f ec t s  of the  90' 
deflected t i p s  on the  maximum trimmed l i f t - d r a g  r a t i o  i s  the  forward 
s h i f t  with increasing Mach number of t he  wing-body-canard aerodynamic- 
center  locat ion which i s  not experienced by many s imi la r  configurations.  
Without t h i s  forward aerodynamic-center s h i f t  t he  s t a t i c  margin of t he  
undef lec ted  t i p s  configuration would be l a rge r ,  thus increasing the  
poss ib i l i t y  of improving t h e  maximum trimmed l i f t -d rag  r a t i o  by de f l ec t -  
ing the t i p s .  
ing Mach number of t he  longi tudinal  benefi ts  derived from deflect ion of 
t he  wing t i p s  is  t h e  f a c t  t h a t  t h e  canard cont ro l  i t se l f  becomes a more 
e f f i c i e n t  trimming device a t  t he  higher Mach numbers than, f o r  instance,  
t ra i l ing-edge f l aps  (see r e f .  7 ) ,  thereby o f f se t t i ng  t o  a ce r t a in  
extent  t h e  penal t ies  incurred by having t o  t r im  against  a large s t a t i c  
margin. 

In f a c t ,  a t  a Mach number of 1-30 t he  maximum 

Another f ac to r  contributing t o  the  reduction with increas- 

One question that might a r i s e  i n  t h e  design of an ac tua l  a i rplane 
concerns how much area should be deflected t o  what angle. During the  
course of analyzing the  present data  it has become apparent t h a t  t h i s  
depends on t h e  leve ls  of longitudinal and d i r ec t iona l  s t a b i l i t y  possessed 
by t h e  pa r t i cu la r  configuration. 
made t h a t  if a la rge  increase i n  d i rec t iona l  s t a b i l i t y  is  needed while 
only a moderate reduction of longitudinal s t a b i l i t y  is  necessary, then 
a comparatively large area should be def lected t o  an angle somewhat less 
than go0. For example, only about one half  of t he  forward aerodynamic 
center  s h i f t  t h a t  would be obtained for  90' of t i p  def lect ion r e su l t s  

However, t he  general  statement can be 
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from 600 of def lect ion (see f i g .  10)  while t he  60° def lected t i p s  pro- * 
vide about 80 percent of t he  maximum increment of d i r ec t iona l  s t a b i l i t y  
which would r e s u l t  f rom 90° of t i p  def lect ion (see f i g .  3 2 ) .  
other  hand, if both la rge  increases i n  d i rec t iona l  s t a b i l i t y  and la rge  
reductions i n  longi tudinal  s t a b i l i t y  a re  needed, then t h e  t i p s  should 
be deflected t o  90° t o  obtain the  maximum e f fec t s  from the  smallest 
amounts of deflected area.  It thus becomes evident t h a t  t h e  attainment 
of the  optimum benef i t s ,  throughout a wide supersonic speed range, from 
t h e  deflection of a f ixed amount of area would l i k e l y  require a var ia -  
t i o n  of t h e  t i p  def lect ion angle with Mach number. 

On t he  

CONCLUSIONS 

An invest igat ion has been conducted t o  determine t h e  e f f ec t s  on the  
untrimmed and trimned aerodynamic charac te r i s t ics  of a canard airplane 
configuration resu l t ing  from the  def lect ion,  about hinge l i nes  p a r a l l e l  
t o  t h e  body center l i ne ,  of t he  outboard 16 percent of the  area of each 
wing panel. The r e su l t s  of t h i s  invest igat ion a re  as follows: 

A 
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1. The increase of longi tudinal  s t a b i l i t y  experienced by the  air-  
plane configuration as the  Mach number w a s  increased from subsonic t o  
supersonic could be completely eliminated throughout t h e  supersonic t es t  
Mach number range by d-eflecting the  t i p s  t o  various angles.  

2. Increasing the  angle of t i p  def lect ion caused reductions i n  
l i f t -curve  slope and increases in  drag due t o  l i f t  which resul ted i n  
decreasing values of maximum untrimmed l i f t - d r a g  r a t i o .  

3 .  The d i rec t iona l  s t a b i l i t y  w a s  increased with increasing t i p  
deflection angle a t  a l l  Mach numbers. 

4. Deflecting t h e  t i p s  permitted the  maximum trimmed l i f t - d r a g  
r a t i o s  t o  be e i t h e r  higher than or equal t o  those obtained with the  
t i p s  undeflected f o r  Mach numbers between 1.30 and 2.22 while t he  
d i rec t iona l  s t a b i l i t y  a t  t he  trimmed angles of a t t ack  w a s  increased 
about 70 percent. A t  Mach numbers between 2.49 and 3.54 t h e  maximum 
trimmed l i f t -drag  r a t io s  were from 7.5 t o  5 percent lower than those 
obtained with the  t i p s  undeflected but  t h e  d i r ec t iona l  s t a b i l i t y  a t  
t he  trimmed conditions w a s  increased from 64 t o  126 percent, respect ively.  

. 
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5. Estimations of the  e f fec ts  of t h e  def lected t i p s  on the  
untrimmed aerodynamic character is t ics  were generally i n  f a i r  agreement 
with the  experimental r e s u l t s .  
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1. Peterson, Victor L.: The Effects of Streamwise-Deflected Wing Tips 
on the  Aerodynamic Characterist ics of an Aspect Ratio 2 Triangular 
Wing, Body, and T a i l  Combination. NASA MEMO 5-18-59A, 1959. 

2. Petersen, Richard H.: The Effects of Wing-Tip Droop on the  
Aerodynamic Character is t ics  of a D e l t a  Wing Aircraf t  a t  Supersonic 
Speeds. Proposed NASA TI4 X-363, 1960. 

3. Winter, K. G., Scott-Wilson, J. B . ,  and Davies, F. V. : Methods of 
Determining and of Fixing Boundary Layer Transit ion on Wind 
Tunnel Models at  Supersonic Speeds. 
Br i t i sh ,  Sept . 1954. 

R.  A. E. TN Aero. 2341, 

4. P i t t s ,  W i l l i a m  C.,  Nielsen, Jack N., and Kaattari, George E. :  
and Center of Pressure of Wing-Body-Tail Combinations at Subsonic, 
Transonic, a d  Supersonic Speeds. NACA Rep. 1307, 1957. 

L i f t  

5. Cohen, Doris  : The Theoretical  Lif t  of F l a t  Sweptback Wings at  
Supersonic Speeds. NACA TN 1555, 1948. 

6. Hedstrom, C .  Ernest, Blackaby, James R.,  and Peterson, Victor L.: 
S t a t i c  S t a b i l i t y  and Control Characterist ics of a Triangular 
Wing and Canard Configuration a t  Mach Numbers From 2.58 t o  3 -53. 
NACA RM A58CQ5, 1958. 

7. H a l l ,  Charles F., and Boyd, John W.: Effects of Canards on Airplane 
Performance a d  S t a b i l i t y .  NACA RM ~ ~ 5 8 ~ 2 4 ,  1958. 



22 

1 -- 0 - io  t o  +15 6 
5 27 

0 - io  t o  +15 

0 -io t o  +15 

0 -io t o  +15 

0 -io t o  +15 

-- BVW3To 2-49 - 3-34 

BVW3T 30 

2.49 - 3.54 -7 to +7 -- 
-- 27 

-- 27 

-- 27 

-- 27 

3 006 
3.06 -7 t o  +7 -- 5 

BVW3Teo 2.49 - 3.54 

BVW3T75 2-49 - 3-34 

I BVW3T90 2-49 - 3.54 

-- 2.49 - 3.54 -7 t o  +7 5 

2-49 - 3.54 -7 t o  +7 5 -- D 

- I , _  

TABU I*- RANGES OF TEST VARIABLES AND INDEX TO PLOTTED DATA 

( a )  Configurations with t r iangular  t i p s  and t i p s  removed 

i ( b )  Configurations with sweptback t i p s  
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A-25062 

( a )  Photograph of model with t r iangular  t i p s  undeflected. 

A-25063 

( b )  Photograph of model with t r iangular  t i p s  def lected 90'. 
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Figure 1.- Model de ta i l s  and dimensions. 
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Figure 23.- Effect of tip deflection on the lateral and directional 
characteristics of the triangular wing configuration at 0' and 
5" sideslip with the canard off and on. 
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directional characteristics of the triangular wing configuration at 5" 
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Figure 31.- Variations with Mach number of the effects on the directional 
characteristics resulting from deflecting the triangular tips with the 
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(b) Triangular t,ips, cp = 90" 

Figure 34.- Relative effects of deflecting the tips on the longitudinal 
and directional characteristics. 
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